
International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 8|P a g e

Low Complexity Out-of-Order Issue Logic Using Static Circuits

1
Mr.P.Raji Reddy,

2
Mrs.Y.Saveri Reddy &

3
Dr. D. R. V. A. Sharath Kumar

1,3
 ECE Dept Malla Reddy College of Engineering & Technology, HYD,

2
 ECE Dept,CMR College of engineering, HYD.

Abstract—
In this paper a single-cycle issue queue circuit architecture that simplifies the wakeup and selection logic is

proposed. The micro-archi- tecture and fully static CMOS circuits are presented for a 32-entry queue that issues

four instructions per cycle. The instruction-ready signals are di- vided into groups and processed in parallel to

issue the four oldest ready instructions. The complete issue queue and prioritization logic requires 20

inversions, allowing simulated circuit operation at over 4 GHz in a foundry 45 nm SOI fabrication process.

Index Terms—CMOS digital integrated circuit, issue queue, microprocessor, out-of-order instruction issue,

superscalar.

I. INTRODUCTION

Microprocessor instruction streams contain

instructions that can potentially execute in parallel.

This instruction level parallelism (ILP) is the

foundation of superscalar processing. ILP provides

a consider- able gain in instructions per cycle (IPC).

With the ability to look across multiple instructions

in the issue window, out-of-order execution

significantly improves IPC over in-order execution.

However, this performance comes at a power and

complexity price.

A. Superscalar Pipeline

A typical superscalar pipeline is as shown in

Fig. 1(a). In-order and speculation techniques

occupy different sections of the complete pipeline.

Dynamic scheduling lies between the decode and

execute stages, eliminating false dependencies

through register-renaming and reducing pipeline

inefficiencies due to data dependencies through

superscalar out-of-order execution. To maintain

precise exception behavior the commit stage forces

in-order commitment of results to the machine

architectural state. This paper presents a simple,

low power design for the critical issue stage [1],

selecting the four oldest ready instructions.

B. Instruction Issue Logic

Selection of highest priority ready instructions

requires a buffer to store instructions, a dependency

tracking mechanism to generate ready signals (ready

indicates that a given instruction inputs will be valid

in the next cycle) and a mechanism to pick

instructions according to a se- lection policy. These

requirements are fulfilled by the instruction issue

logic that has wakeup and selection logic blocks as

shown in Fig. 1(b).

C. Paperrganization

Section II briefly discusses the prior related

work. The proposed architecture is described in

Section III, focusing on the micro-architectural

organization and circuit design. Section IV

covers the performance evaluation and simulation

results. Section V concludes the paper.

Fig. 1. Superscalar pipeline (a) showing where the

issue logic resides. (b) Instruction issue logic high

level functional diagram.

The wakeup logic is comprised of a queue that

stores the renamed instruction registers, tracks

their dependencies and generates ready signals

based on the which dependencies’ results are

ready in the next clock. The selection logic

prioritizes the ready instructions for issue. The

update logic then accepts new instructions into the

RESEARCH ARTICLE OPEN ACCESS

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 9|P a g e

queue in the next cycle, maintaining the ordering of

existing entries and opened slots with new

instructions at the clock edge.

II. RELATED WORK
A. Complexity and Single vs. Distributed Queues

The instruction issue logic performance is

quantified in terms of its critical timing path.

Palacharla et al. analyzed the impact of issue width

and window size on the complexity of wakeup

and selection logic [2] where since dependent

instructions cannot be simultaneously executed,

they were distributed heuristically into first-input

first-output (FIFO) buffers. Only instructions at the

head of each buffer are considered for issue. The

IBM Power4 design utilizes 11 single issue

specialized queues [3]. Vangal et al. also

distributed the issue window with two single issue,

eight-entry instruction schedulers [4] where to

enable fast parallel execution, complementary

signal generation (CSG)-based ready and select

logic was used, creating an inherent timing race

condition requiring extensive manual circuit

validation, i.e., design effort. Distributed windows

reduce performance and require more entries to

achieve the same IPC as a centralized window due

to underutilization [5].

B. Speed and IPC Impact

Prioritizing ready instructions accounts for

more than half of the latency of an issue queue [6]

and so must be comprehended by any scheme.

Stretching the issue logic operation loop over two

or three clock cycles incurs an IPC loss of 10% or

19%, respectively. Oldest- first selection gives an

IPC benefit of up to 8% over a random position-

based scheme and provides better instruction

sequencing [7]. Farrell et al., used a compacting

register scoreboard to preserve the temporal order of

the queue for the Alpha 21264 [8] at the cost of

significant data movement. This design used a

dynamic tree-based re- quest-grant arbitration

scheme for oldest-first selection, ordering en- tries

in the queue by age.

C. Power Dissipation

The issue logic is a significant component of the

overall power consumption, e.g., in the Alpha

21264, 18% of the total power was dissipated in the

all dynamic logic issue queues [9]. Bahar et al.

asserted that the arbiters in the 21264 [8] account

for around 35% of the total processor power when

using a two arbiter scheme [10]. Goshima et al.

claimed dependence detection in wake-up logic is

similar to register renaming dependency detection

[11] and proposed scheduling using matrices

instead of content addressable memory (CAM) to

track instruction dependencies. Though matrix

functions are faster and dis- sipate less power than

CAM-based operations, the matrix nature limits

their practical size [12]. Sassone et al. proposed a

modified matrix scheduler to improve the scalability

of this scheme, based on the observation that

wakeup and select matrices are sparse [12].

D. Sort-Based Issue Logic

To overcome the complexity of tree-based

schemes and improve the cycle time while

minimizing power, sort-based issue prioritization

logic [13] provides a comparison point for the issue

queue design that this brief proposes. In [13] the

ready generation follows that used in [8] in that it

uses a scoreboard and oldest to newest instruction

ordering. The priority selection logic uses multiple

odd-even merge sorting net- works to select four

oldest ready instructions from the issue queue.

Except for the scoreboard based issue circuits the

design only uses static CMOS gates. The ready

instructions are selected in parallel by sorting them

in small groups, resulting in manageable sorting

network depth. The results of these group selects are

then prioritized to determine the overall oldest four

instructions. The shift logic utilizes small barrel

shifters to control scoreboard compaction.

III. PROPOSED ISSUE QUEUE

MICRO-ARCHITECTURE
The proposed issue queue uses a static CAM to

track dependencies between instructions.

Instructions are shifted to keep the oldest at the top

to provide easy prioritization as in [3], [8] . Fig. 2

shows the signal flow for the proposed shift based

issue logic. The select logic is implemented

primarily using shifters, with simple issue count

logic and shift/grant logic. As opposed to a dynamic

scoreboard, the static CAM

Fig. 2. Signal flow for shift-based issue logic.

Simplifications by cascading

shift-based priority logic are evident by the removal

of the one-hot conversion, output multiplexing, and

decode stages

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 10|P a g e

Fig. 3. Overall micro-architecture of the proposed

issue queue.

Minimizes instruction wakeup power while the low

complexity static shifters and multiplexers maximize

the performance by reducing the critical timing path

while minimizing power. The CAM compares

currently executing operation destination tags

with pending operation source tags, setting latched

ready signals. Since the CAM window shifts

instructions before accepting new instructions, oldest

instructions are always at the top of the queue, i.e.,

instruction 0 has highest priority while instruction 31

has the lowest priority (see Fig. 3). The select logic

selects the four highest priority, ready instructions

by checking if three or less prior (higher priority)

instructions are ready to issue before each ready

instruction. If this condition is satisfied, the ready

instruction grant signal is asserted, i.e., issued. The

clock cycle begins by comparing the destination tags

with the source operands of each pending operation

in the static CAM. If both the operands of an

instruction are ready and the instruction is valid, the

ready signal, which is the output of a latch, is set for

that entry. Ready signals, rdy(031) are forwarded to

the select logic to generate grants and shifter

controls for compaction.

The ready signals are divided into four groups each

processing eight entries in parallel (see Fig. 3). The

first shifter one-hot outputs L_ad(0-3) for each

instruction indicate the number of entries ready to

issue prior to the current one (above it) within the

local (L) group, labeled by suffixes a-d. The first

shifter circuit (e.g., shifter1a) one hot outputs T_a-

d(0-3) indicate the total number of ready instructions

in the a group. The issue count logic, labelled ICL

combines the total ready instructions to calculate the

multiple-group totals (signals starting with IT) to

generate the global issue signals G_a-d(0-3). The G

signal generation in terms of L and T follows:

that are calculated in shifter2. This shifter basically

sums the and terms. An instruction is granted if it is

ready and the total number of ready instructions

before it is less than four, i.e., G_a<4. The grant

signals and shift signals set up to the clock rising

edge. To illustrate the signal flow for a specific

case, consider for example, if instructions in issue

queue locations 1, 2, 8, 11, and 27 are ready. L_a(0-

3)=0010 indicating two instructions are ready.

T_a(0-3)=0010 indicating two instructions are ready

from group a. T_b(0-3)=0010 as two instructions, 8

and 11 are ready from group b. instructions 12–15

since more than three instructions are ready before

them. Finally, depending on whether a given entry is

ready and the total number of instructions ready

before it, G(0-3) , grant and shift signals are

generated for each instruction.

A. Static Wakeup CAM Logic

The CAM shown in Fig. 4 is fully static and

overcomes scoreboard limitations, particularly high

power dissipation, with negligible performance

impact. The CAM storage is separated from the

CAM compare in order to accommodate four

simultaneous searches, and uses static CMOS shift

and update circuits. CAMstorage for each instruction

consists of two encoded source operands that are 6-

bits, and one valid bit. The storage/update circuit of

the valid bit is similar to the CAM store circuitry.

The shift(0–4) signals arrive before the rising edge

of the clock to update the CAM opposed to a

dynamic scoreboard, the static CAM minimizes

instruction wakeup power while the low complexity

static shifters and multiplexers maximize the

performance by reducing the critical timing path

while minimizing power. The CAM compares

currently executing operation destination tags with

pending operation source tags, setting latched ready

signals. Since the CAM window shifts instructions

before accepting new instructions, oldest

instructions are always at the top of the queue, i.e.,

instruction

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 11|P a g e

Fig. 5. First shifter, (a) first column cell, (b)

shifter cell, (c) overall circuit architecture. The

outlined columns use inverted logic.

B. Shifter-Based Select and Update

The all static CMOS select logic is implemented

using a first level shifter, issue count logic, a second

level shifter and shift grant generator logic. As

mentioned, the ready signals from the wakeup logic

are divided into four groups of 8-instructions to

parallelize the prioritization. 1) First Shifter Based

Priority Stage: The four first stage prioritization

shifters, shifter1a through shifter1d, each handle

eight sequential instruction-ready signals. The first

column shift unit cell circuit is shown in Fig. 5(a)

and others in Fig. 5(b). To determine if three or less

instructions are ready above the current one, four

columns are used as shown in Fig. 5(c). The layout

of each of these corresponding blocks is shown in

Fig. 6. Columns 1 and 3 are driven with inverted

inputs, allowing inverters rather than buffers in the

basic cell to limit the total Number of inversions. The

column inputs ‖1101‖ indicate zeros instructions are ready

before the first instruction. The outputs L_a—d(0-3)

Indicate the number of instructions that are ready to be

issued within the group. If four or more instructions are

ready, L(0-3)=0000. The Shift1 block operation is

depicted in Fig. 7(a). The first column shows ready

instructions in the group of eight. The first row has a

hard- coded value as ―1000‖. These values will pass

to next row if the subsequent ready signal is ―0‖

else will shift right (see Fig. 7(a) for the logical,

and Fig. 7(b) with actual signal polarities as

implemented to limit in- versions).

Fig. 6. Layout of the shifter1 structure

implemented on the 45 nm foundry process.

Details of the gates are shown to the left (a) and

(b), while a full entry is shown to the right. (a)

First column cell. (b) Static shifter cell. (c)

Overall layout of the shifter block.

2) Second Shifter and Issue Count Logic (ICL):

The second shifter combines the local outputs with

the number of instructions ready in previous groups

to determine the total number of ready instructions

before the current instruction. The input to shifter2d

is the L_d(0-3) for instructions 24 to 31 and sum of

the number of instructions ready in groups a, b, and

c The ICL calculates number of instructions ready

in previous groups using static combinational logic

in two inversions

Two ICL blocks reside in the critical path to shifter2d

that produces the aggregate number of instructions

ready in all of the previous groups in four inversions.

Fig. 8 shows the second shifter circuit, again

implemented to minimize signal inversions and

delay. AND gates drive an nMOS transistor,

pulling the output to ground and ensuring that the

output is always strongly driven.

3) Shift/Grant Generation Logic:

The shift/grant generator is a two inversion

combinational circuit. If the instruction is ready

and the number of instructions ready before it, i.e.,

G(03) , is less than or equal to three, grant (gnt)

for the instruction is set high. The number of shifts

that a particular instruction should undergo is

equal to the number of instructions granted before

it, one hot encoded as. G(03) If all previous ready

signals are zeroes, it implies that more than four

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 12|P a g e

instructions are ready before the current instruction.

This is indicated by the logical OR of complements

of previous ready signals. In this case, the output is

asserted active low.

IV. PERFORMANCE EVALUATION

The complete design of the proposed and the

sort based issue queue in [13] was carried out using

a foundry high performance SOI 45-nm CMOS

process. Simulations were carried out with VDD = 1

V using Cadence Ultrasim. Key blocks were laid out

(see Fig. 6) and other in- terconnects use estimated

wire-loads.

Fig. 7. First shifter operation details. (a) The

logical flow of ready signals and (b) shows actual

implemented flow with inverted logic for the

outlined columns.

Fig. 8. Second shifter (shifter2) logic to

obtain the signals that drive that control the

queue entry compaction multiplexers.

A. Worst-Case Timing Path Simulation

The sorter based issue queue [13] requires 30

inversions Including the latch td2q and tsetup times.

The proposed shifter-based issue logic design

requires 20 inversions. Fig. 9 shows the critical path

timing simulation for the shift based design. The

shift inputs to the CAM storage multiplexer setup

30 ps before the rising edge of the clock to update

the CAM with source operand data from one of the

five instructions. The rising edge triggered flip-flop

outputs the data to the comparator after a tclk2q delay

of 18 ps. The comparator compares the source and

destination tags and generates a source match signal

after 24 ps (three low fan-out inversions). The source

match and previous ready information is combined to

generate the instruction ready signal 56 ps after the

clock rising edge.

Fig. 9. Simulated waveforms of the proposed

issue queue using shifter-based priority selection

logic.

The ICL outputs IT_abc(0-3) are 151 ps after the

worst-case ready signal assertion and are fed to the

second shifters that combine it with L(03) for each

instruction to generate total number of instructions

ready before the current instruction, G(03) for each

instruction. The G(03) signals and ready signals for

an instruction drive the shift/grant generator to

generate grant signals for execution units after

another 14 ps and one-hot shift signals for the CAM

storage multiplexer. The last grant signal, gnt(31),

is generated 227 ps after rising edge of the clock

for the worst case critical path. This provides

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 13|P a g e

sufficient setup time to allow a 4 GHz clock rate,

assuming reasonable clock skew.

The sort-based design [13] dissipates over 5x more

energy per cycle than this static shift based design

(see Table I). The area of the design proposed here

is also considerably smaller, primarily due to fewer

transistors. The proposed issue queue is compared

against other issue queue architectures in Table II.

While implementations are on differing fabrication

technologies, clock frequencies and areas are

normalized to the 45-nm technology node using

standard scaling values. A higher clock frequency

can be obtained with a lower issue width per queue,

e.g., the CSG design [4] and Power4 [3], as

opposed to the Alpha implementation [8].

However, the IWB implementation achieves a

higher clock frequency together with larger issue

width by sacrificing window size.

POWER AND AREA COMPARISON

Our proposed issue queue circuit architecture

provides a unified queue with good window and

issue width at adequate clock rates for most

modern, i.e., power limited, CPUs.

TABLE II

ISSUE WIDTH AND WINDOW SIZE

FOR DIFFERENT ARCHITECTURES

As mentioned, in order to overcome scaling and

portability issues, the proposed design employs only

static CMOS gates. Thus the pro- posed design is

amenable to auto place and route methods, if not

full synthesis. While the shifter block was

implemented as a regular embedde block, its layout

was also accomplished using a commercially

available APR tool (Encounter).

The use of the static CMOS gates also allows the use

of conventional timing tools for the timing analysis of

the design. Timing analysis of the shifter block was

carried out using Primetime, with results consistent

with the circuit simulations.

V. CONCLUSION
An oldest-first priority, 32 entry issue queue that

divides the instruction ready signals into groups and

selects the four highest priority instructions has been

described. By processing ready signals in parallel,

the complexity is reduced and select operations are

completed in a single cycle. All logic is static

CMOS, and can be clocked at 4 GHz in the target

foundry 45-nm SOI process at the typical process

conditions, with an energy consumption of 1.15 pJ

per cycle at 1 V. The design is amenable to auto

place and route, as well as static timing analysis,

enhancing portability. The circuits are, of course,

applicable to distributed issue queues.

 [1] J. Hennessey, D. Patterson, and A. Arpaci

Dusseau, Computer Archi- tecture: A

Quantitative Approach, 4th ed. San Mateo,

CA: Morgan Kaufmann, 2006.

[2] S. Palacharla, N. Jouppi, and J. Smith,

―Complexity-effective super- scalar

processors,‖ in Proc. 24th Annu. Int. Symp.

Comput. Arch., 1997, pp. 206–218.

[3] T. N. Buti, R. McDonald, Z. Khwaja, A.

Ambekar, H. Le, W. Burky, and B.

Williams, ―Organization and

implementation of the register re- naming

mapper for out-of-Order IBM Power4

processors,‖ IBM J. Res. Develop., vol. 49,

no. 1, pp. 167–188, Jan. 2005.

[4] S. Vangal, N. Borkar, E. Seligman, V.

Govindarajulu, V. Erraguntla, H. Wilson,

A. Pangal, V. Veeramachaneni, M. Anders,

J. Tschanz, Y. Ye, D. Somasekhar, B.

Bloechel, G. Dermer, R. Krishnamurthy,

S. Narendra, M. Stan, S. Thompson, V.

De, and S. Borkar, ―A 5 GHz32b integer-

execution core in 130 nm dual-VT

CMOS,‖ in ISSCC’02 Dig. Tech. Papers,

2002, pp. 412–413.

[5] M. Johnson, Superscalar Microprocessor

Design. Englewood Cliffs, NJ: Prentice-

Hall, 1990.

[6] M. Brown, J. Stark, and Y. Patt, ―Select-

free instruction scheduling logic,‖ in Proc.

34th Annu. Int. Symp. Microarch., 2001, pp.

204–213.

[7] A. Buyuktosunoglu, A. El-Moursy, and D.

International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622

NATIONAL CONFERENCE on Developments, Advances & Trends in Engineering Sciences

(NCDATES- 09
th
 & 10

th
 January 2015)

 CMR Engineering College 14|P a g e

Albonesi, ―An oldest-first selection logic

implementation for non-compacting issue

queues,‖ in Proc. ASIC/SOC Conf, 2002,

pp. 31–35.

[8] J. A. Farrell and T. C. Fischer, ―Issue logic

for a 600-MHz out-of-order execution

microprocessor,‖ IEEE J. Solid-State

Circuits, vol. 33, no. 5, pp. 707–712, May

1998.

[9] R. Kessler, E. McLellan, and D. Webb,

―The alpha 21264 micropro- cessor

architecture,‖ in Proc. Int. Conf. Comput.

Design: VLSI Comput. Processors, 1998,

pp. 90–95.

[10] R. Bahar and S. Manne, ―Power and energy

reduction via pipeline bal- ancing,‖ in Proc.

Int. Symp. Comput. Arch., 2001, pp. 218–

229.

[11] M. Goshima, K. Nishino, Y. Nakashima, S.

Mori, T. Kitamura, and S. Tomita, ―A

high-Speed dynamic instruction scheduling

scheme for superscalar processors,‖ in

Proc. Int. Symp. Micro-arch., 2001,

pp.225–236.

[12] P. Sassone, J. Rupley, E. Brekelbaum, G.

Loh, and B. Black, ―Ma- trix scheduler

reloaded,‖ in Proc. Int. Symp. Comput.

Arch., 2007, pp. 335–346.

[13] S. Mhambrey, L. Clark, S. Maurya, and K.

Berezowski, ―Out of order issue logic using

sorting networks,‖ in Proc. 20th Great

Lakes Symp. VLSI, 2010, pp. 385–388.

[14] J. Leenstra, J. Pille, A. Mueler, W. Sauer,

and D. Wendel, ―A 1.8-GHz instruction

window buffer for an out-of-order

microprocessor core,‖ IEEE J. Solid-State

Circuits, vol. 36, no. 11, pp. 1628–1635,

Nov. 2001

